
Functional Programming

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario



When the Function is the Thing
• In O-O programming, you typically know where an action is needed,

but what is to be done depends on the particulars.

• In functional programming, you typically know what action is needed,
but where it is to be done depends on the particulars.

• Some programming languages make passing functions around and
combining them easy. 

• These are known as functional programming languages.



Functional Programming

• Some believe the need to use concurrency for future hardware speed-up as
“the end of the free lunch” and see FP as the solution.

• Advocates say  

“If you aren’t programming functionally, 
you are programming dysfunctionally”

• FP here stands for “functional programming”, but is also the name of a particular
functional programming language by John Backus, of Fortran fame.



Related Concepts

• All functional programming languages allow you to pass functions
as parameters, return them as results, construct new functions by
composing others, etc.

• Some do not allow variable update or structure modification.

• Some have lazy evaluation.

• When you do this some things get easier and some things get harder.



A Language with a Functional Subset

• Scheme is a multi-paradigm programming language in the Lisp family
with a nice functional subset.

• Developed in the 1970s by Guy Steele and his PhD Supervisor 
Gerald Sussman at MIT.

• Used as a first language of instruction at MIT in the pre-Java era.

• Used as a first language of instruction at Waterloo in the post-Java era.



Java Man

Pithecanthropus erectus

from “The Outline of Science” J. Arthur Thomson (1922)



Elements of Scheme

• Syntax:  (operator  arg ...)

• Some operators are built-in, others programmer defined.

• lambda:  create a function  (lambda (n)  (+ n 1))

• if: conditional evaluation  (if (> n 0)  n (- n))

• define: introduce a name   (valid at top level and certain other places)

(define n 7)

(define factorial (lambda (n)
(if (= n 1) 1 (* n (factorial (- n 1)))) ))



List Operations

• (cons a b) create a “pair” data structure

• (car  p) first element of a pair

• (cdr  p) second element of a pair

• (null? x) test whether x is a null pointer.

• ’( ) special syntax for the null pointer.

• (list a1 ...) short-hand for some cons-es ending with null.

(cons 1 (cons 2 (cons 3 (cons 4 ’( ) ))))  (list 1 2 3 4)



Recursive Structures 

• With recursive list data structures, it is natural to write 
recursive programs.

• Make a new list by adding 3 to each element of an input list:

(define add-3-to-each (lambda (l)
(if (null? l)

’()
(cons (+ 3 (car l))  

(add-3-to-each (cdr l)) ) ) ))

• Make a new list by squaring each element of an input list:

(define square-each (lambda (l)
(if (null? l)

’() 
(cons (* (car l) (car l))  

(square-each (cdr l)) ) ) )) 



Functions Can Be Arguments

(define call-my-function (lambda (f a)  (f a)))

(define call-fun-on-list-elements (lambda (f l)
(if (null? l)

’()
(cons (f (car l))

(call-fun-on-list-elements f (cdr l)) ) ) ))

(define zipper (lambda (f l1 l2)
(if (or (null? l1) (null? l2))

’()
(cons (f (car l1) (car l2))

(zipper f (cdr l1) (cdr l2)) ) ) ))



Local Bindings

• Local variables may be introduced with “let”

• It has the form

(let ( (var1 initial-value1) (var2 initial-value2) ...)
expr1
expr2 ...)

• E.g.
(define factorial (lambda (n)

(let ((nm1 (- n 1)))

(if (< n 2) 
1 
(* n (factorial nm1)) ) ) ))



Lexical Scoping

• An inner function use all the local names of the functions that
enclose it.

(define outer-fn (lambda (n)
(let ( (inner-fn  (lambda (m) (+ m n)) ) )

(inner-fn (+ n 2) ) ))



Returning Functions:  Closures

• E.g.   

(define add (lambda (a)
(lambda (b) (+ a b))  ))

• What is the value of “a” when the inner function is returned?

• It is the value of “a” that  “add” was called with. 

E.g.    (add 3)  =>  (lambda (b) (+ a b))  ; with a = 3



Returning Functions:  Closures

• E.g.  A counter...

(define make-counter (lambda ()
(let ((count 0))

(lambda (n)  
(set! count (+ count n))
count ) ) ))

(define counter1 (make-counter))
(counter1 7)  ; yields 7
(counter1 8)  ; yields 15

(define counter2 (make-counter))
(counter2 9)  ; yields 9
(counter2 3)  ; yields 12
(counter1 3)  ; yields 18



Functional Programming Tricks

• Functional composition

(define compose (lambda (f g) (lambda (a) (f (g a))) ))

• E.g.

(define negative-inverse (compose - /))

(negative-inverse 9)   ;  Yields – 1/9



Functional Programming Tricks

• Convert make a unary function from a binary function:

(define curry (lambda (f) (lambda (a) (lambda (b) (f a b)))))

(define plus  (curry +))
(define plus5 (plus 5))
(define nine  (plus5 4))

((plus 5) 4)    ; Yields 9



Functional Programming Tricks

• Changing the order of arguments:

(define twist (lambda (f) (lambda (a b) (f b a)) ))

(define subtract-from (twist -))

(subtract-from 9 11)   ; Yields 2

(define minus1 ((curry subtract-from) 1))

(minus1 9)             ; Yields 8



Composing Functional Elements

• Very powerful

• Complex ideas can be expressed with short programs

• Be careful not to write unreadable code.



Functional Programming with Lists

• map:     (map f (list a b c d))

gives (list (f a) (f b) (f c) (f d))

This is built in in Scheme.



Functional Programming with Lists

• reduce: (reduce f (list a b c d)) 
gives (f a (f b (f c d))) 

E.g.  (reduce + (list 1 2 3 4 5))  ; Yields 15

(define dot-product (lambda (u v)
(reduce + (zipper * u v)) ))

(define eval-line (lambda (x) (lambda (b a) (+ b (* a x)) )))

(define eval-poly (lambda (x) (lambda (l) (reduce (eval-line x) l))))

((eval-poly 2) (list 5 4 3 2 1))   ; Yields 57



Functional Programming with Lists
• Spread:   (spread (list f g h) x)

gives (list (f x) (g x) (h x))

• Question: Write the “spread” function using list operations.

• Question:  Write the “spread” function using “map” and “lambda.”



Lazy Evaluation: Force and Delay

• “delay” creates a promise ... An object that may be evaluated later.

• “force” causes the  promise to be evaluated to give a value.

• E.g.
(define make-five (lambda () (write “Hello”) (+ 2 3)))

(define five (delay (make-five))) ; make-five not called yet
...
...
(define fiveno (force five))      ; make-five called here.


