Functional Programming

CS 1025 Computer Science Fundamentals |

Stephen M. Watt
University of Western Ontario

When the Function is the Thing

* In O-O programming, you typically know where an action is needed,
but what is to be done depends on the particulars.

* In functional programming, you typically know what action is needed,
but where it is to be done depends on the particulars.

e Some programming languages make passing functions around and
combining them easy.

» These are known as functional programming languages.

Functional Programming

» Some believe the need to use concurrency for future hardware speed-up as
“the end of the free lunch” and see FP as the solution.

* Advocates say

“If you aren’t programming functionally,
you are programming dysfunctionally”

* FP here stands for “functional programming”, but is also the name of a particular
functional programming language by John Backus, of Fortran fame.

Related Concepts

All functional programming languages allow you to pass functions
as parameters, return them as results, construct new functions by
composing others, etc.

Some do not allow variable update or structure modification.

Some have lazy evaluation.

When you do this some things get easier and some things get harder.

A Language with a Functional Subset

Scheme is a multi-paradigm programming language in the Lisp family
with a nice functional subset.

Developed in the 1970s by Guy Steele and his PhD Supervisor
Gerald Sussman at MIT.

Used as a first language of instruction at MIT in the pre-Java era.

Used as a first language of instruction at Waterloo in the post-Java era.

Java Man

Pithecanthropus erectus

from “The Outline of Science” J. Arthur Thomson (1922)

Elements of Scheme

e Syntax: (operator arg ...)
e Some operators are built-in, others programmer defined.

e lambda;

e |f:

e define:

create a function (lambda (n) (+ n 1))
conditional evaluation (if (n 0) n (- n))

Introduce a name (valid at top level and certain other places)

(define n 7)

(define factorial (lambda (n)
(af & nl) 1 (* n (factorial (- n 1)))) |

List Operations

e (consab) create a “pair’ data structure

o (car p) first element of a pair

e (cdr p) second element of a pair

e (Null? x) test whether x is a null pointer.

() special syntax for the null pointer.

e (listal ... short-hand for some cons-es ending with null.

(cons 1 (cons 2 (cons 3 (cons 4 °(C))))) & (list 1 2 3 4)

Recursive Structures

e With recursive list data structures, it Is natural to write
recursive programs.

 Make a new list by adding 3 to each element of an input list:

(define add-3-to-each (lambda (I)
(Gf (null? D)
O
(cons (+ 3 (car 1))
(add-3-to-each (cdr 1))))))

 Make a new list by squaring each element of an input list:

(define square-each (lambda (1)
Gaf (null? 1)
O
(cons (* (car 1) (car 1))
(square-each (cdr 1))))))

Functions Can Be Arguments

(define call-my-function (lambda (f a) (f a)))

(define call-fun-on-list-elements (lambda (f I)
Gf (null?)
O
(cons (f (car 1))
(call-fun-on-list-elements T (cdr 1))))

(define zipper (lambda (f 11 12)
(f (or (null? 11) (null? 12))
O
(cons (f (car 11) (car 12))
(zipper T (cdr 11) (cdr 12))))))

Local Bindings

* Local variables may be introduced with “let”
e |t has the form

(let ((varl initial-valuel) (var2 initial-value2) ...)
exprl
expr2 ...)

 E.Q.
(define factorial (lambda (n)
(let ((nm1 (- n 1)))

(if (<« n 2)
1
(* n (factorial nml))))))

Lexical Scoping

 An Inner function use all the local names of the functions that
enclose It.

(define outer-fn (lambda (n)
(let ((inner-fn (lambda (M) (+ m n))))

(inner-fn (+ n 2))))

Returning Functions: Closures

 E.Q.

(define add (lambda (a)
(lambda (b) (+ a b))))

 \What is the value of “a” when the inner function is returned?

e |tis the value of “a” that “add” was called with.

E.g. (add 3) => ((lambda (b) (+ a b)) ; with a =3

Returning Functions: Closures

 E.g. A counter...

(define make-counter (lambda ()
(let ((count 0))
(lambda (n)
(set! count (+ count n))

count))))

(define counterl (make-counter))
(counterl 7) ; yields 7
(counterl 8) ; yields 15

(define counter2 (make-counter))
(counter2 9) ; yields 9
(counter2 3) ; yields 12
(counterl 3) ; yields 18

Functional Programming Tricks

e Functional composition

(define compose (lambda (f g) (lambda (a) (f (g a)))))

 E.Q.
(define negative-inverse (compose - /))

(negative-inverse 9) ; Yields — 1/9

Functional Programming Tricks

« Convert make a unary function from a binary function:

(define curry (lambda (f) (lambda (a) (lambda (b) (f a b)
(define plus (curry +))
(define plus5 (plus 5))
(define nine (plus5 4))

((plus 5) 4) - Yields 9

Functional Programming Tricks

» Changing the order of arguments:

(define twist (lambda (f) (lambda (a b) (f b a))))

(define subtract-from (twist -))

(subtract-from 9 11) ; Yields 2

(define minusl ((curry subtract-from) 1))

(minusl 9) ; Yields 8

Composing Functional Elements

* Very powerful
 Complex ideas can be expressed with short programs

» Be careful not to write unreadable code.

Functional Programming with Lists

e map:. (map T (list a b c d))
gives (list (f a) (F b) (f c) (f d))

This is built in in Scheme.

Functional Programming with Lists

e reduce: (reduce T (list a b c d))
gives (Fa (fb (fcd))

E.g. (reduce + (list 1 2 3 4 5)) ;Yields 15

(define dot-product (lambda (u v)
(reduce + (zipper * u v))))

(define eval-line (lambda (x) (lambda (b a) (+ b (* a x)))))
(define eval-poly (lambda (x) (lambda (1) (reduce (eval-line x) 1))))

((eval-poly 2) (list 54 3 2 1)) ; Yields 57

Functional Programming with Lists

o« Spread: (spread (list f g h) x)
gives (list (f x) (g x) (h X))

* Question: Write the “spread” function using list operations.

* Question: Write the “spread” function using “map” and “lambda.”

Lazy Evaluation: Force and Delay

» “delay” creates a promise ... An object that may be evaluated later.
» “force” causes the promise to be evaluated to give a value.

 E.Q.
(define make-five (lambda (O (write “Hello”) (+ 2 3)))

(define Tive (delay (make-five))) ; make-five not called

(define fiveno (force fTive)) , make-five called here

